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hc_)mog_eneoué)as We!l as for photoinducéd reactions’ With controlled by the initial electron-transfer pathway and is therefore
a!|phat_|c_molecules, |nject|on_of an electr_on leads to a purely not easy to distinguish from the concerted mechanism. In cyclic
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concerted mechanism. With molecules containing low lying scan rate, mechanism diagnosis is based on the value of an
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the rate-determining step of the stepwise pathway is the initial

electron transfer. Under these conditions, the thermodynamic _ _
factor governing the competition between the two mechanisms *= (R'I72F)/(8Ep/8 Inv) (1'86R-|7F)/(EP/2 EP)

is the standard free energy of anion radical cleavagg (ed 1) When the value of. reaches 0.5 or less, the rate-determining

step is an electron-transfer step amds then a true transfer
AG?: = BDFE+ EORX/RX'- - on-/x— 1) coefficient (symmetry factor). The rate-determining electron-

transfer step may then be either the initial electron transfer of

(BDFE: R-X bond dissociation free energf’ s: standard  the stepwise pathway or the dissociative electron transfer of the

potentials of the subscript couples). The influence of these threeconcerted pathway. In both cases, the activation free energy is

parameters on the mechanism has been illustrated by severabxpected to be a quadratic function of the standard free energy

experimental examples:»© of the reaction and thus varies linearly with the later parametér.
There are also a few borderline cases where, as shown in Figure
1, for the same cleaving acceptor molecule, a transition between . N AG? 2 1 AG?
concerted and stepwise mechanisms has been observed upon  AG = AGy|1+ =k a=3 NG
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Figure 2. Cyclic voltammetry of iodobenzene (1.35 mM) in acetonitrile  Figure 3. Cyclic voltammetry of 1.35 mM iodo-benzen®), 1 mM

(a) and DMF (b)+ 0.1 M n-BusBF,. Variation of the apparent transfer ~ bromobenzene(), 3-methyl-iodobenzene&X), 1-iodonaphthalenev)

coefficient, with the scan rate. Temperature: 284 é&nd 329 0) K. in DMF + 0.1 M n-BusBF.. Variation of the apparent transfer coefficient,
with the scan rate. Temperature: 294 K.

Reductive cleavage of bonds involving an aromatic carbon are

usually considered to follow a stepwise mechanism (see eq 1)Table L

owing to relatively large bond dissociation energies and to the X BDFE?2 E%xrx— P E%«x- P AG2a
presence of ar* orbital able to accommodate the incoming | 250 “ooa 0.99 o071
electron E%xrx- is not very negative). A large number of Br 321 —244 1.48 —071
aromatic chlorides and bromides, including chloro and bromoben- ¢ 3.86 -2.78 1.85 ~0.77

zene, have indeed been shown to follow a stepwise reductive
cleavage in electrochemical and homogeneous reactions, and no /N €V.°In V vs SCE.

examples have been provided so far of a one-step reductive

cleavage of bonds involving an aromatic carbbwe have found detailed elsewheré® an increase in temperature is equivalent to
that the reductive cleavage of aromatic iodides may follow such a decrease of the scan rate and hence of the driving force, thus
a concerted mechanism at low driving forces. favoring the concerted pathway over the stepwise pathway.

The cyclic voltammetry of iodobenzene exhibits a wave that ~ Comparing iodobenzene with bromobenzene (Figure 3a) clearly
remains irreversible in the scan rate domain we have explored shows that the later undergoes a stepwise reductive cleavage with,
both in acetonitrile and itN,N'-dimethylformamide (DMF}2 In unlike the former, no trace of mechanism transition at the lower
both solvents, at 2FC, the apparent transfer coefficient, end of the scan rate domain, in line with the mechanism previously
derived from the peak-width (Figure 2), begins to increase with found for its homogeneous reductive cleavage by a series of
the scan rate and passes through a maximum before decreasingromatic anion radicafs®
in the rest of the range of explored scan rates. These variations Why is the concerted mechanism more favorable with iodo-
are typical of the passage from a concerted mechanism, at thebenzene than with bromo and chlorobenzene? Using eq 1, we
lower end of the scan rate domain, to a stepwise mechanism, atcan see from the following approximate figutethat, because
its upper end, upon increasing the driving force as schematically of mutual compensation of the three terms, thermodynamics does
depicted in Figure 1 (see similar behaviors in refs 6¢ and 7a). not favor clearly the possibility of a concerted mechanism in the
Over this range of scan rates, the variation of the driving force, case of iodobenzene (Table 1). However, in terms of intrinsic
measured by the location of the peak potential, is ca. 200 mV on barrier, the concerted cleavage is favored for iodobenzene as
total 3 compared to bromobenzene by ca. 0.17 ADf4), i.e., a factor

At a higher temperature, 5&, the same type of variation of ~ 0f 10° in terms of rate constants, whereas the rate of the
o are observed (Figure 2b), confirming the existence of a outersphere initial electron transfer of the stepwise pathway is
transition between the two mechanisms. We also note that thenot expected to vary much from | to Br.
increase of temperature shifts the- logy profile toward higher As seen in Figure 3b, the reductive cleavage of another aromatic
scan rates, thus giving more room to the concerted mechanism.odide, namely 3-methyl-iodobenzene, also shows a transition
This effect of temperature provides a further confirmation of the between stepwise and concerted mechanisms at scan rates closely
existence of a transition between the two mechanisms, since, assimilar to values observed with iodobenzene. In contrast, 1-io-
donaphthalene undergoes a stepwise reductive cleavage, with

(11) (a) For reviews, see refs 1d, 2. For the specific case of chloro and mixed kinetic control by electron transfer and follow-up bond
bromobenzene see ref 1b. (b) Andrieux, C. P leg‘an;gg* fd'ZDéJgg%‘f"Bou‘:h'at' breaking, whatever the scan rate. The later observation may be

(12) (a) Two glassy carbon disks were used as working electrodes, one €xplained as follows. While thBDFE is about the same in both
with a 3-mm diameter and the other with a 1-mm diameter from 0.02 to 1 cases, the energy of th& orbital is expected to be lower in the

V/s and from 1 to 50 V/s, respectively. They were carefully polished (1-mm & ; o ; ;

diamond paste) and ultrasonically rinsed in pure ethanol after each cyclic first Ce}se than in the second in line with the difference of peak
voltammetric run. The instrument was a home-built potentiostat equipped with potentials,—2.08 vs.—2.30 (V vs SCE), at a scan rate, 10V/s,

a positive feedback compensatith.Each peak width determination was  where both molecules undergo a stepwise reductive cleavage.
repeated 3 to 6 times. The error on the averaged valug2is3 mV. (b) .

Garreau, D.; Sawant, J.-M.J. Electroanal. Chem1972 35, 309. (c) The As ?een earlier, at 56C and at a scan rate of 0.1 \_//S the
electron stoichiometry is 2 as found by comparison of the peak with the reductive cleavage of Phl follows a concerted mechanism. The
reversible peak of anthracene and expected from the fact that the phenyl radicalvalues of the peak potentia2.14 V vs SCE, and. = 0.32 are

is quite easy to reduce, easier than iodobenzene. . . _— . o
(13) In both the outersphere and the dissociative cases, increasing the scat’! good agreement with the predictions of the dissociative electron

rate shifts the potential toward more negative values, thus offering a larger transfer t|’1('1‘0l’)}-°d’f’l5
driving force to the reductive cleavage reaction. In conclusion, the reductive cleavage of iodobenzene and

(14) (a) SubtractingAS ~ 0.3 eV from the BDE“¢ (b) The E’ryrx— S . . ",
for Br and Cl are from ref 11b. The difference between the effects of Br and 3'methyl iodobenzene prowdes two novel examples of a transition

I'is likely to be smaller than the difference between the effects of Cl and Br. between concerted and stepwise mechanisms upon increasing the

A 200 mV shift instead of 300 mV seems a reasonable approximation. The driving force of the r ion. Evi i i
E%-x- s are from ref 14d and references therein.Handbook of Chemistry g eaction. Evidence is thus provided that bonds

and Physics 72nd ed.; CRC: Cleveland, OH, 1991992; p 9-121. (d)  Involving an aromatic carbon may be cleaved in one step by
Savant, J.-M.J. Phys. Cheml1994 98, 3716. o single-electron transfer at low enough driving forces. Other
(15) With a preexponential factor of 4 10° cm s and a diffusion examples, not necessarily restricted to electrochemical reactions,

coefficient of 10° cn? st AG* = 0.433 eV7®1%f Application of eq 4 with : . .
AAGE = 4o + D leads toE° — —0.541 V vs SCED + 4 = 4.2 eV and that may appear in the future concern other leaving groups with

therefore toio = 1.4 eV, ie., an equivalent reactant radius for solvent Weak cleaving bonds (e.g., oniums) or cleavages assisted by strong
reorganization of 2.2 A, a quite reasonable value since it is practically equal ion-pairing of the leaving anions.

to the ionic radius of 1.1 (b) Handbook of Chemistry and Physic&nd
ed.; CRC: Cleveland, OH, 1991992; p 12-8. JA991365Q



